

BBioNets
Boosting the adoption
of Bio-Based Technologies

Cross-Fertilisation Meetings

Bio-Based Practices on Farms & Forests

“Innovations in Nutrient Recovery”

The effect of displacing mineral fertiliser with bio-based fertilisers in cropping systems

Daniel Coonan, Teagasc Johnstown Castle, Wexford, Ireland

Online, 11/12/2025

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Research Executive Agency (REA). Neither the European Union nor the granting authority can be held responsible for them.

Rationale behind the study

- A long-term arable rotation trial set up to assess the relationships between bio-based fertiliser (BBF) incorporation with:
 1. Crop yield
 2. Nutrient uptake
 3. Soil nutrient and carbon levels
- 7 years of crop & soil data collected – ongoing
- BBFs balanced with chemical fertiliser to meet plant requirements
- Most BBFs easy to acquire for farmers

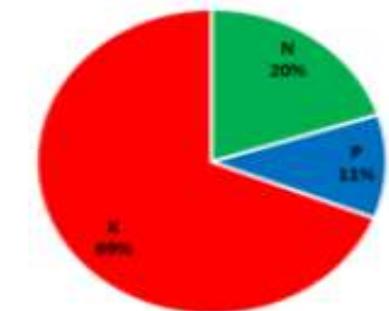
Site Location & Experimental Layout

- Trial located at a location in Arklow, Co. Wicklow, Ireland – East coast
- The experimental design is a randomized block design with four replicates of 7 treatments.

Poultry Manure

- Poultry manure in its raw form – used for first 6 crops in the rotation
- Poultry pellets used in most recent crops
- Excellent source of nutrients, especially N & K.
- Raw form manure spread using dung spreader -> Pellets by a Bredal-type spreader
- Savings can be achieved if conditions are suitable (distance from farm of origin, storage facilities available & applying the manure to the right crop at the right time)

			Kg/tonne Fresh Weight			
	pH	DM%	N	P	K	S
Poultry manure	7.5	85	30.7	10	17.4	6
Poultry Pellets	-	100	40	15	25	6.1


Cattle Slurry

- Cattle slurry is a valuable source of nutrients which is produced by cattle and stored on-farm.
- Under Nitrates regulations, the available nutrient content of 1000 gallons of cattle slurry (6% DM + LESS) to a fertile soil in spring is equivalent to a bagged compound fertiliser of 9:5:32.
- Using LESS techniques helps decrease ammonia and nitrous oxide emission -> better air quality + reduced greenhouse gas
- Timing -> Spring app. up to 50% more N recovery than Summer app.

Cattle Slurry

			Kg/tonne Fresh Weight			
	pH	DM%	N	P	K	S
Slurry	6.5	10	3.7	1.02	5.43	0.4

Separated Slurry Solids

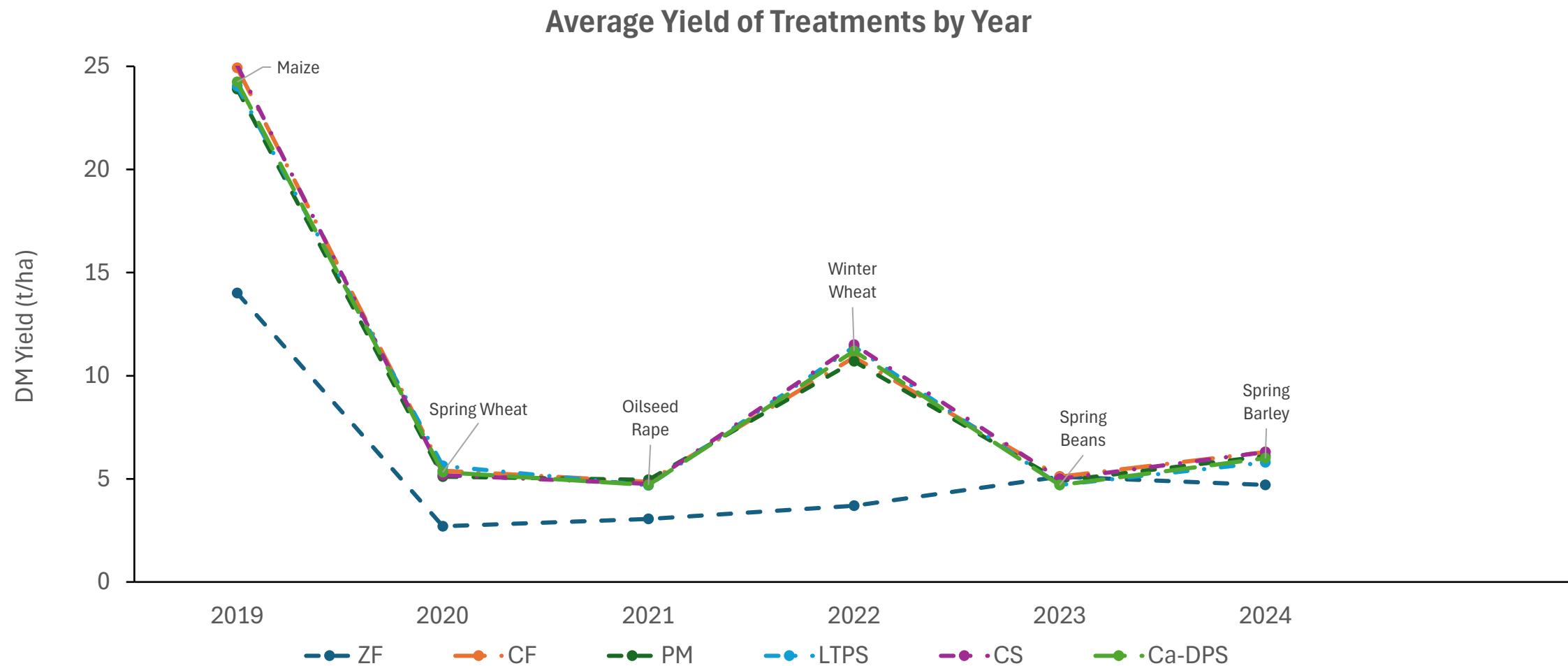
- Fibrous, solid fraction which remains post-mechanical separation of raw slurry
- Can be dried and used for animal bedding, used in biogas production or spread on land as slow release fertiliser
- Separating solid fraction allows for ease of storage, transport and precise application
- The process allows for up to 20% extra storage tank space
- Liquid fraction easier to spread using LESS equipment -> no solids

	Kg/tonne Fresh Weight					
	pH	DM%	N	P	K	S
LTPSS	12.6	78	1.7	19.1	77.3	8.2
SCSS	7.3	27	4.58	1.18	4.65	-

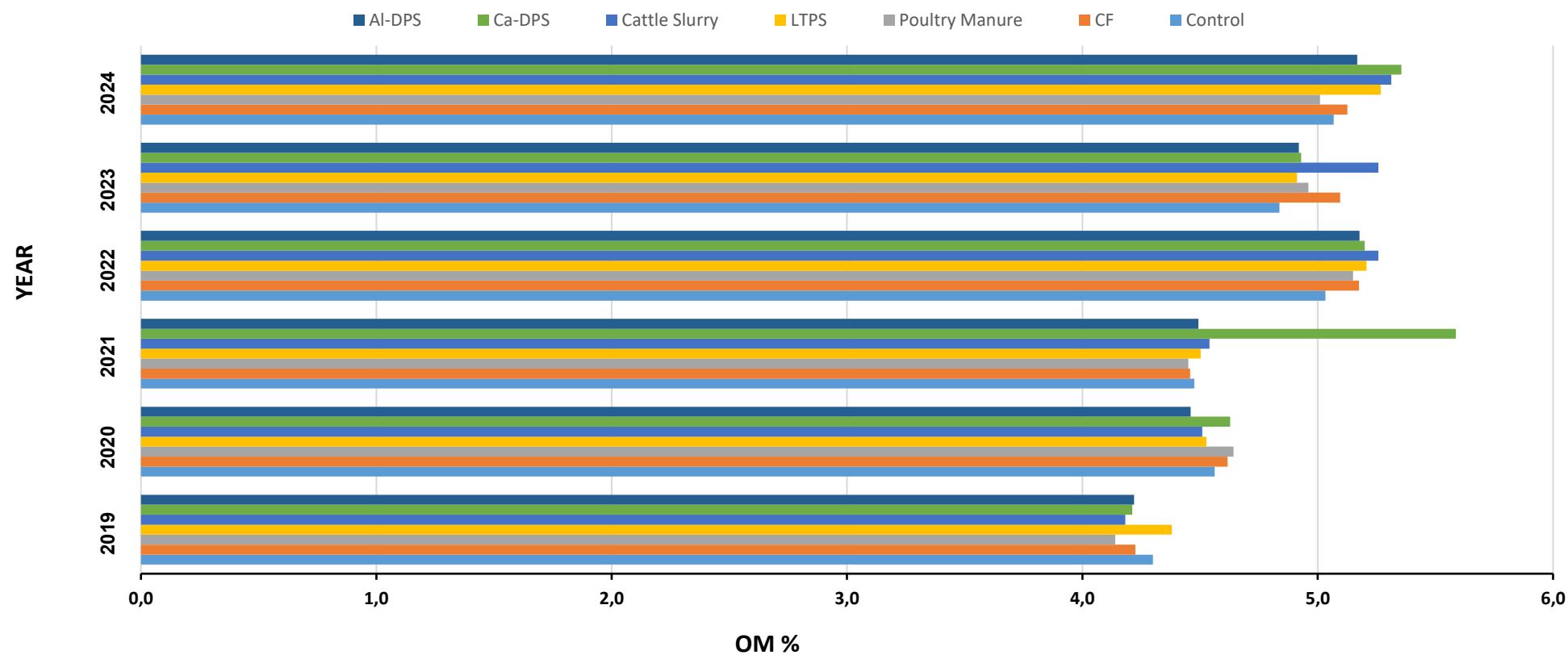
Ca-DPS

- Byproduct from the wastewater treatment of dairy plants where calcium compounds, often lime, are used to remove phosphorus
- Generated by a dissolved air flotation technique (DAF) – dairy wastewater rich in fats, oils & greases are floated to surface – lime is added (Ca(OH)_2 or CaO) -> Ca and P rich sludge produced
- Cheese-texture - can be spread using Bredal-type spreader

			Kg/tonne Fresh Weight			
	pH	DM%	N	P	K	S
Ca-DPS	7.4	24	5.3	23.8	1.2	0.7


Al-DPS

- This activated sludge is generated using aeration and a biological floc formation including the dosing of aluminium flocculent to remove P.
- Common across dairy wastewater processing facilities -> aerobic secondary treatment (activated sludge aeration) -> removes organic material / suspended solids -> removal of P in tertiary treatment phase using ferric sulphate or aluminium chloride.
- Liquid texture – can be applied using slurry tanker (dribble bar onto growing crop etc.)


			Kg/tonne Fresh Weight			
	pH	DM%	N	P	K	S
Al-DPS	7	10	6.1	4.9	1.6	0.6

Yield Trend

Organic Matter Trend

Average Organic Matter % Test Results

- Average soil organic matter levels of the seven treatments across six site-years

Relevance of research

Ability of BBFs to displace a portion of synthetic fertiliser need – opens up avenues to:

1. Reduce the use of synthetic fertilisers (legislation)
2. Reduce mineral fertiliser costs + optimise profitability
3. Maintain crop yields & agronomic performance
4. Build and maintain good soil health + soil nutrient & carbon stocks
5. Supply soil organic matter over time – healthier soils
6. Promote earthworm numbers – biologically friendly + soil structure

Thank you!

Daniel Coonan, Teagasc

daniel.coonan@teagasc.ie

www.bbionets.eu

